Published on

UIUCTF 2023 – At home

Authors
  • avatar
    Name
    Lumy
    Twitter

At home

Mom said we had food at home

Table of Contents

  1. Source code
  2. Solution

Source code

from Crypto.Util.number import getRandomNBitInteger

flag = int.from_bytes(b"uiuctf{******************}", "big")

e = 359050389152821553416139581503505347057925208560451864426634100333116560422313639260283981496824920089789497818520105189684311823250795520058111763310428202654439351922361722731557743640799254622423104811120692862884666323623693713
n = 26866112476805004406608209986673337296216833710860089901238432952384811714684404001885354052039112340209557226256650661186843726925958125334974412111471244462419577294051744141817411512295364953687829707132828973068538495834511391553765427956458757286710053986810998890293154443240352924460801124219510584689
c = 67743374462448582107440168513687520434594529331821740737396116407928111043815084665002104196754020530469360539253323738935708414363005373458782041955450278954348306401542374309788938720659206881893349940765268153223129964864641817170395527170138553388816095842842667443210645457879043383345869

a = getRandomNBitInteger(256)
b = getRandomNBitInteger(256)
a_ = getRandomNBitInteger(256)
b_ = getRandomNBitInteger(256)

M = a * b - 1
e = a_ * M + a
d = b_ * M + b

n = (e * d - 1) // M

c = (flag * e) % n

print(f"{e = }")
print(f"{n = }")
print(f"{c = }")

Solution

The encrypted value of the flag is computed as:

c = (flag * e) % n

To reverse this and find the value of flag, we need to compute the modular multiplicative inverse of e modulo n. This inverse operation will permit to find flag given c.

Here's the Python code to find the value of flag:

from Crypto.Util.number import inverse

# Given encrypted values
e = 359050389152821553416139581503505347057925208560451864426634100333116560422313639260283981496824920089789497818520105189684311823250795520058111763310428202654439351922361722731557743640799254622423104811120692862884666323623693713
n = 26866112476805004406608209986673337296216833710860089901238432952384811714684404001885354052039112340209557226256650661186843726925958125334974412111471244462419577294051744141817411512295364953687829707132828973068538495834511391553765427956458757286710053986810998890293154443240352924460801124219510584689
c = 67743374462448582107440168513687520434594529331821740737396116407928111043815084665002104196754020530469360539253323738935708414363005373458782041955450278954348306401542374309788938720659206881893349940765268153223129964864641817170395527170138553388816095842842667443210645457879043383345869

# Compute the modular multiplicative inverse of 'e' modulo 'n'
d = inverse(e, n)

# Recover the flag value using 'c' and 'd'
flag = (c * d) % n

# Convert the flag value back to bytes and then to a string
flag_bytes = flag.to_bytes((flag.bit_length() + 7) // 8, byteorder='big')
flag_str = flag_bytes.decode('utf-8')

print(f"Decrypted flag: {flag_str}")

FLAG : uiuctf{W3_hav3_R5A_@_h0m3}